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Abstract

Here, the dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells subjected to

thermal/mechanical load is carried out based on higher-order theory. The formulation accounts for the variation of the

in-plane and transverse displacements through the thickness, abrupt discontinuity in slope of the in-plane displacements

at the interfaces, and includes in-plane, rotary inertia terms, and also the inertia contributions due to the coupling

between the different order displacement terms. The strain–displacement relations are accurately accounted for in the

formulation. The shell responses are obtained employing finite element approach in conjunction with direct time in-

tegration technique. A detailed parametric study is carried out to bring out the effects of length and thickness ratios,

eccentricity parameters and number of layers on the thermal/mechanical response characteristics of non-circular shells.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many engineering applications, the cylinders are used as primary structural members because of their

high structural efficiency. Due to the advent of composite materials, composite cylinders are of particular

interest in the design of lightweight and efficient structures, especially in the aerospace industry. While
circular cylinders are perhaps the most common, due to the design considerations, for instance in sub-

mersibles, flight structures etc., cylindrical shells with non-circular cross-sections are preferred. Most of

these structures are, in general, subjected to thermal/mechanical loads and dynamic environment during

their operation. Hence, the study of dynamic behavior of such non-circular cylindrical shell structures

through accurate modeling is important in assessing the failure and has recently attracted the attention of

researchers.

The vibration analysis of circular cylindrical shells has received considerable attention in the litera-

ture and has been reviewed by Leissa (1973), and, more recently, by Noor (1990), Noor and Burton (1990),
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Qatu (1992) and Soldatos (1994). However, the number of studies that deal with the behavior of non-

circular cylinders is rather limited and reviewed by Soldatos (1999). This is possibly due to the difficulty

introduced in governing equations because of the cross-sectional radius of curvature as a function of an arc

co-ordinate. It may be concluded from the literature that few contributions are available concerning with
free vibration analysis of anisotropic laminated non-circular cylindrical shells compared to those of iso-

tropic case, and they are cited here. The free vibration of laminated non-circular case has been analyzed

employing classical theory (Soldatos and Tzivanidis, 1982; Soldatos, 1984; Hui and Du, 1986; Suzuki et al.,

1994), and using first-order shear deformation theory (Noor, 1973; Kumar and Singh, 1995; Suzuki et al.,

1996). The theory assuming parabolic variation of thickness shear for the study of composite non-circular

shells has been attempted (Soldatos, 1987; Kumar and Singh, 1996). The Galerkin procedure was employed

in the work of Soldatos and Tzivanidis (1982), Soldatos (1984), Soldatos (1987) and Hui and Du (1986)

whereas the power series expansion method was adopted in the work of Suzuki et al. (1994, 1996). Noor
(1973) solved the problem using multilocal difference discretization method while the energy approach

was applied by Kumar and Singh (1995, 1996). In all these investigations, the analysis has been carried out

using analytical approaches, and has been limited to free vibrations of cross-ply non-circular shells. To the

best of authors� knowledge, there is no study available in the literature pertaining to the dynamic response

of non-circular composite cylindrical shells, and even isotropic case has not received adequate consid-

eration, except the work of Cheung et al. (1991) that concerns with thin isotropic shell based on classi-

cal theory.

It can be opined from the existing literature that, in general, the first-order theory that requires an ar-
bitrary shear correction to the transverse shear stiffness is fairly accurate for the estimation of global

behaviors like deflections, fundamental frequency and buckling load of moderately thick composite lam-

inates. However, it is inadequate for the estimation of higher-order frequencies, mode shapes, large de-

flections and distribution of stresses. This has necessitated the introduction of higher-order function in the

displacement model, and layer-wise theory for the study of circular cylindrical shells (Bhimaraddi, 1984;

Bhaskar and Vardan, 1991; Di Sciuva and Icardi, 1993; He, 1994; Icardi, 1998; Ganapathi et al., 2002). To

the authors� knowledge, the application of such models involving higher-order expansions of the dis-

placement fields in powers of the thickness co-ordinate yielding both the transverse shear and the transverse
normal deformation is not commonly available yet in the literature for the analysis of laminated non-

circular cylindrical cases. Furthermore, the studies employing the improved approximate technique such as

finite element method, which can easily handle a more general case of loading, complicated boundary

conditions and complexity due to the advanced composite materials, for the non-circular cylindrical case

seems to be scarce in the literature.

Here, a higher-order theory with through the thickness approximation of in-plane and transverse dis-

placements for the laminates (Makhecha et al., 2001a; Ganapathi et al., 2002) is extended to analyze the

transient response characteristics of laminated cross-ply non-circular cylindrical shells subjected to thermal/
mechanical loads based on finite element procedure. The formulation is, general, in the sense that it is

applicable for arbitrary variation in the cross-section of the cylindrical shells. The element used is a C0

eight-noded field consistent shell element with 13 degrees of freedom per node. The strain–displacement

relationship is accurately introduced in the formulation. All the inertia terms, due to the parts resulting

from first-order model, the higher-order displacement function, and the coupling between the different

order displacements are included in evaluating the kinetic energy. The structural responses are evaluated

using Newmark integration scheme. The accuracy of the present model is checked against the available

analytical/three-dimensional solutions. A detailed parametric study is carried out to bring out the effects of
variations of non-circularity, thickness and length ratios, and number of layers on the dynamic charac-

teristics of non-circular cross-ply cylindrical shells with elliptical cross-section. The results evaluated here

demonstrate the profound importance of the inclusion of through-thickness variation and slope disconti-

nuity in the displacement kinematics on the response of non-circular shells.
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2. Formulation

A laminated composite non-circular cylindrical shell is considered with the co-ordinates x along the

meridional direction, y along the circumferential direction and z along the thickness direction having origin
at the middle-surface of the shell as shown in Fig. 1. Based on Taylor�s series expansion method for de-

ducing the two-dimensional formulation of a three-dimensional elasticity problem, the in-plane displace-

ments uk and vk, and the transverse displacement wk for the kth layer, are assumed as

ukðx; y; z; tÞ ¼ u0ðx; y; tÞ þ zhxðx; y; tÞ þ z2bxðx; y; tÞ þ z3/xðx; y; tÞ þ Skwxðx; y; tÞ
vkðx; y; z; tÞ ¼ v0ðx; y; tÞ þ zhyðx; y; tÞ þ z2byðx; y; tÞ þ z3/yðx; y; tÞ þ Skwyðx; y; tÞ
wkðx; y; z; tÞ ¼ w0ðx; y; tÞ þ zw1ðx; y; tÞ þ z2Cðx; y; tÞ

ð1Þ

Here, u0, v0, w0 are the displacements of a generic point on the reference surface; hx, hy are the rotations of
normal to the reference surface about the y and x axes, respectively; w1, bx, by , C, /x, /y are the higher-order
terms in the Taylor�s series expansions, defined at the reference surface. wx and wy are generalized variables

associated with the zigzag function, Sk.
The zigzag function, Sk, as given in the work of Murukami (1986), is defined by

Sk ¼ 2ð�1Þkzk=hk ð2Þ

where zk is the local transverse co-ordinate with its origin at the centre of the kth layer and hk is the cor-

responding layer thickness. Thus, the zigzag function is piecewise linear with values of )1 and 1 alternately

at the different interfaces. The �zigzag� function, as defined above, takes care of the inclusion of the slope

discontinuity of u and v at the interfaces of the laminate as observed in exact three-dimensional elasticity

solutions of thick laminated composite structures. The use of such function is more economical than a

Fig. 1. Generalized co-ordinate system and cross-sectional details of the elliptical shell.
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discrete layer approach of approximating the displacement variations over the thickness of each layer

separately. Although both these approaches account for slope discontinuity at the interfaces, in the discrete

layer approach the number of unknowns increases with the increase in the number of layers, whereas it

remains constant in the present approach.
The strains in terms of middle-surface deformation, rotations of normal, and higher-order terms asso-

ciated with displacements for kth layer are as,

feg ¼ ebm
es

� �
� �eet

0

� �
ð3Þ

The vector febmg includes the bending and membrane terms of the strain components and vector fesg
contains the transverse shear strain terms. These strain vectors are accurately introduced in the formulation

and are defined as (Kraus, 1967; Bhaskar and Vardan, 1991; Rao and Ganesan, 1996; Qatu, 1999)

ebm
es

� �
¼

exx
eyy
ezz
cxy
cxz
cyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

uk;x
ðvk;y þ wk=RÞ=ð1þ z=RÞ

wk
;z

uk;y=ð1þ z=RÞ þ vk;x
uk;z þ wk

;x

vk;z þ ðwk
;y � vk=RÞ=ð1þ z=RÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð4aÞ

where the subscript comma denotes the partial derivative with respect to the spatial co-ordinate succeeding

it. R, the principal radii of curvature in the circumferential direction, is function of circumferential co-

ordinate y. The variation of R in the circumferential direction depends on the type of cross-section i.e. for

instance, for elliptical cross-section, R can be described as (Suzuki et al., 1996)

R ¼ ðb2=R0Þð1þ l0 cos 2hÞ
�3=2 ð4bÞ

where R0ð¼ ½ða2 þ b2Þ=2	1=2Þ is the representative radius, l0 ¼ ða2 � b2Þ=ða2 þ b2Þ; and h is a variable that

denotes an angle between the tangent at the origin of y (circumferential co-ordinate) and the one at any

point on the middle-surface. a, b are the lengths of semi-major and semi-minor axes of elliptical cross-

section.
Using the kinematics given in Eq. (1), Eq. (4a) can be rewritten as

ebm
es

� �
¼ ½�ZZ	f�eeg ð5aÞ

where

½�ZZ	 ¼ Z1 Z2 Z3 Z4 Z5 O1 O1 O1 O1 O2

OT
1 OT

1 OT
1 OT

1 OT
2 Z6 Z7 Z8 Z9 Z10


 �
ð5bÞ

f�eeg ¼ e1 e2 e3 e4 e5 e6 e7 e8 e9 e10f gT ð5cÞ
The various submatrices involved in Eqs. (5b) and (5c) are given in Appendix A.

The thermal strain vector f�eetg is represented as

f�eetg ¼

�eexx
�eeyy
�eezz
�eexy
�eexz
�eeyz

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼ DT

ax
ay
az
axy
0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð5dÞ
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where DT is the rise in temperature and is generally represented as function of x, y, and z. ax, ay , az and axy
are thermal expansion coefficients in the shell co-ordinates and can be related to the thermal coefficients (a1,

a2 and a3) in the material principal directions.

The constitutive relations for an arbitrary layer k, in the laminated shell (x; y; z) co-ordinate system can
be expressed as

frg ¼

rxx

ryy

rzz

sxy

sxz

syz

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

¼ ½�CCk	feg ¼

�CC11
�CC12

�CC13
�CC14 0 0

�CC12
�CC22

�CC23
�CC24 0 0

�CC13
�CC23

�CC33
�CC34 0 0

�CC14
�CC24

�CC34
�CC44 0 0

0 0 0 0 �CC55
�CC56

0 0 0 0 �CC56
�CC66

2
66666666664

3
77777777775

k exx � �eexx

eyy � �eeyy

ezz � �eezz

cxy � �ccxy

cxz � �ccxz

cyz � �ccyz

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð6Þ

where the elements of the stiffness coefficients, �CCk
ij (i; j ¼ 1; 6) can be obtained using the appropriate

transformation on the stiffness matrix ½Ck	 corresponding to material principal directions, as outlined in the

literature (Herakovich, 1998). frg, feg and f�eetg are stress, strain, and thermal strain vectors due to rise in

temperature, respectively.
The governing equations for the shell structure are obtained by applying Lagrangian equations of

motion given by

d

dt
½oðT � UTÞ=o _ddi	 � ½oðT � UTÞ=odi	 ¼ 0; i ¼ 1; . . . ; n ð7Þ

where T is the kinetic energy; UT is the total potential energy consisting of strain energy contributions due

to the in-plane and transverse stresses, and work done by the externally applied mechanical loads, re-

spectively. fdg ¼ fd1; d2; . . . ; di; . . . ; dngT is the vector of generalized displacements and di are independent.
A dot over the variables represents the partial derivative with respect to time. The superscript T refers the

transpose of a matrix/vector.

The kinetic energy of the shell is given by

T ðdÞ ¼ 1

2

Z Z Xn
k¼1

Z hkþ1

hk

qkf _uuk _vvk _wwk g _uuk _vvk _wwk
n oT

1
�"

þ z
R

�
dz

#
dxdy ð8Þ

where qk is the mass density of the kth layer. hk, hkþ1 are the z co-ordinates of laminate corresponding to the

inner and outer surfaces of the kth layer.

Using the kinematics given in Eq. (1), Eq. (8) can be rewritten as

T ð _ddÞ ¼ 1

2

Z Z Xn
k¼1

Z hkþ1

hk

qkf _ddg
T½Z	T½Z	f _ddg 1

�"
þ z
R

�
dz

#
dxdy ð9Þ

where

f _ddgT ¼ f _uu0 _vv0 _ww0
_hhx _hhy _ww1

_bbx _bby _CC _//x
_//y

_wwx
_wwy g

and

½Z	 ¼
1 0 0 z 0 0 z2 0 0 z3 0 Sk 0

0 1 0 0 z 0 0 z2 0 0 z3 0 Sk

0 0 1 0 0 z 0 0 z2 0 0 0 0

2
4

3
5
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The potential energy functional UT is given by,

UTðdÞ ¼
1

2

Z Z Xn
k¼1

Z hkþ1

hk

frgTfeg 1
�"

þ z
R

�
dz

#
dxdy �

Z Z
qwdxdy ð10Þ

where q is the distributed force acting on the inner surface of the shell.

Using Eqs. (5a)–(5d), and (6), the potential energy functional UT given by Eq. (10) can be rewritten as

UTðdÞ ¼
1

2

Z Z Xn
k¼1

Z hkþ1

hk

ðf�eegT½�ZZ	T½�CCk	½�ZZ	f�eeg
"

� 2f�eegT½�ZZ	T½�CCk	f�eetg þ f�eetgT½�CCk	f�eetgÞ 1
�

þ z
R

�
dz

#
dxdy

�
Z Z

qwdxdy ð11Þ

The governing equations obtained by substituting Eqs. (9) and (11) in Eq. (7) can be solved analytically/

numerically.

Here, finite element approach, using an eight-noded quadrilateral shell element having thirteen degrees of
freedoms/generalized displacements per node (fde

i g ¼ fui0; vi0;wi
0; h

i
x; h

i
y ;w

i
1; b

i
x; b

i
y ;C

i;/i
x;/

i
y ;w

i
x;w

i
yg

T
for ith

node) is adopted for solving the governing equations. To obtain the kinetic and the total potential energies

for the element, the vector f _ddg and the strain vector f�eeg involved in Eqs. (9) and (11) are expressed in terms

of shape/interpolation functions, their derivatives (Zienkiewicz, 1971), and the vector of element level

degrees of freedoms/generalized displacements fdeg as

f _ddg13x1 ¼ ½H 	13x104f _dd
eg104x1; f�eeg35x1 ¼ ½B	35x104 def g104x1 ð12Þ

where

fdeg ¼ f fde
1g

T fde
2g

T fde
3g

T fde
4g

T fde
5g

T fde
6g

T fde
7g

T fde
8g

T g

The kinetic and the total potential energy expressions, simplified using Eq. (12), are given as

T ðdeÞ ¼ 1

2
f _ddegT½M e	f _ddeg ð13Þ

UTðdeÞ ¼ 1

2
fdegT½Ke	fdeg � fdegTfF e

Tg � fdegTfF e
Mg þ

1

2

Z Z Xn
k¼1

Z hkþ1

hk

f�eetgT½�CCk	f�eetg 1
�"

þ z
R

�
dz

#
dxdy

ð14Þ
The elemental governing equations, obtained by substituting Eqs. (13) and (14) in Eq. (7), are

½M e	f€ddeg þ ½Ke	fdeg ¼ fF e
Tg þ fF e

Mg ð15Þ

where the elemental mass ½M e	 and stiffness ½Ke	 matrices, and thermal/mechanical load vectors (fF e
Tg and

fF e
Mg) can be expressed as

½M e	 ¼
Z Z Xn

k¼1

Z hkþ1

hk

qfHgT½Z	T½Z	fHg 1
�"

þ z
R

�
dz

#
dxdy

½Ke	 ¼
Z Z Xn

k¼1

Z hkþ1

hk

½B	T½�ZZ	T½�CCk	½�ZZ	½B	 1
�"

þ z
R

�
dz

#
dxdy

fF e
Tg ¼

Z Z Xn
k¼1

Z hkþ1

hk

½B	T½�ZZ	T½�CCk	f�eetg 1
�"

þ z
R

�
dz

#
dxdy

ð16Þ
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and

fF e
Mg ¼

Z Z
fHwgTqdxdy

The coefficients of mass and stiffness matrices, and the load vectors involved in governing Eq. (15) can be

rewritten as the product of term having thickness co-ordinate z alone and the term containing x and y. In
the present study, while performing the integration, terms having thickness co-ordinate z are explicitly

integrated whereas the terms containing x and y are evaluated using full integration with 5
 5 points Gauss

integration rule. Following the usual finite element assembly procedure (Zienkiewicz, 1971), the governing

equation for the forced response of the laminated shell are obtained as

½M 	Gf€ddgG þ ½K	GfdgG ¼ fFTgG þ fFMgG ð17Þ

where ½MG	 and ½KG	 are the global mass and stiffness matrices. fFTgG, fFMgG are the global thermal and

mechanica load vectors, respectively. f€ddgG and fdgG are the global acceleration and displacement vectors

respectively.

The solutions of Eq. (17) can be obtained using Newmark�s direct time integration method (Subbaraj

and Dokainish, 1989).

3. Element description

The element employed here is a simple C0 continuous, shear flexible and serendipity type of quadrilateral

shell element (HSDT13) with 13 nodal degrees of freedom as outlined in the formulation. It is developed

based on field consistency approach (Pratap, 1985).

If the interpolation functions for an eight-noded element are used directly to interpolate the thirteen field

variables (u0, v0, w0, hx, hy , w1, bx, by , C, /x, /y , wx, wy) in deriving the membrane and shear strains, the

element will lock and show oscillation in the membrane and shear stresses. Field consistency requires that

the membrane and the transverse shear strains must be interpolated in a consistent manner. Thus, the w0

term in the expression for membrane strain fe1g (second strain component) given in Eq. (A.2) have to be

consistent with the field functions v0;y . Similarly, the terms hx and ðhy ; v0Þ in the expression for transverse

shear strains (fe6g and fe10g) given in Eq. (A.3) have to be consistent with the field functions w0;x and w0;y ,

respectively, as outlined in the work of Pratap (1985). This is achieved by using a field-redistributed sub-

stitute shape functions to interpolate those specific terms that must be consistent. The element thus derived

is tested for its basic properties and is found free from the rank deficiency, shear/membrane locking, and

poor convergence syndrome. For the sake of brevity, the development of the element based on such dis-

placement approximation, and its performances are omitted, as they are available in the literature
(Ganapathi and Makhecha, 2001; Makhecha et al., 2001a; Makhecha et al., 2001b; Makhecha et al., 2001c;

Ganapathi et al., 2002) and it follows the standard procedure for the given kinematics and structural

theory. The element HSDT13 is applicable for both thick and thin situations.

The finite element represented as per the kinematics given in Eq. (1), is referred as HSDT13. Five more

alternate standard discrete models are proposed, to study the influence of higher-order terms in the dis-

placement functions, whose displacement fields are deduced from the original element by deleting the

appropriate degrees of freedom (w1 and C
:
¼ 0; or w ¼ 0; or w, w1 and C

:
¼ 0; or z2 terms

::
, w, w1 and C

:
¼ 0;

or dropping all the higher-order terms). These alternate models, and the corresponding nodal degrees of
freedom are shown in Table 1.
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4. Results and discussion

The study, here, is mainly focused on dynamic response analysis of simply supported non-circular cross-

ply cylindrical shells, with elliptical cross-section, subjected to thermal/mechanical loads, considering

various higher-order theories possible within the scope of assumed kinematics employed in the formulation.

Since the higher-order theory, in general, is required for the accurate analysis of thick composite structures,

the emphasis in the present work is placed on the laminated shells with radius-to-thickness ratios 6 50.

For the detailed parametric study, the shear correction factor is taken as 5=6 for the first-order model.
Furthermore, the influences of various parameters such as radius-to-thickness (R0=h) and length-to-radius

(L=R0) ratios, eccentricity (e ¼ ½1� ðb=aÞ2	1=2) and number of layers (N ) on the response characteristics of

shells are analyzed. Further, all the strain energy terms are evaluated using exact numerical integration

scheme as the element employed is based on the field consistency approach.

Based on the progressive mesh refinement, a 16
 8 grid mesh (circumferential and meridional direc-

tions) is found to be adequate to model the one-eighth of the shells (quarter in cross-section and half in

length) for the present analysis. Before proceeding for the detailed study, the formulation developed herein

is validated considering the free vibration of laminated cross-ply circular and elliptical cylindrical shells
against analytical/three-dimensional solutions (Ye and Soldatos, 1997; Suzuki et al., 1996; ANSYS, 1997)

and they are shown in Tables 2 and 3. For the validation purpose, the value for the shear correction factor

is assumed as 1 in the present FSDT5 as the same value is assumed in the FSDT model of Suzuki et al.

(1996). It may be noted here that the solutions obtained for the elliptical case using present FSDT5 agree

well with those of analytical approach (Suzuki et al., 1996). However, it is seen from these tables that the

results of present model HSDT13 agree well with the three-dimensional solutions. For the dynamic re-

sponse analysis, the solutions obtained using the present formulation agree very well with the available

numerical results, based on the classical theory, for an isotropic case (Cheung et al., 1991). For the sake of
brevity, these results are not presented.

Table 1

Alternate eight-noded finite element models considered for parametric study

Finite element model Degrees of freedom per node

HSDT13 (Present) u0, v0, w0, hx, hy , w1, bx, by , C, /x, /y , wx, wy

HSDT11a u0, v0, w0, hx, hy , bx, by , /x, /y , wx, wy

HSDT11b u0, v0, w0, hx, hy , w1, bx, by , C, /x, /y

HSDT9 u0, v0, w0, hx, hy , bx, by , /x, /y

HSDT7 u0, v0, w0, hx, hy , /x, /y

FSDT5 u0, v0, w0, hx, hy

Table 2

Verification of present results with 3D elasticity solutions for natural frequency parameter X (¼ xR
ffiffiffiffiffiffiffiffiffiffi
q=E2

p
Þ of a simply-supported

cross-ply circular cylindrical shell

Circumferential

wave number, n
R/h

5 10 20

HSDT13 3D analytical

solution (Ye and

Soldatos, 1997)

HSDT13 3D analytical

solution (Ye and

Soldatos, 1997)

HSDT13 3D analytical

solution (Ye and

Soldatos, 1997)

1 0.339297 0.339 0.331522 0.332 0.329408 0.329

2 0.306985 0.306 0.224928 0.225 0.197009 0.197

3 0.594289 0.591 0.330063 0.329 0.194639 0.194

0�/90�/0�, E1=E2 ¼ 25; L=R ¼ 5; Longitudinal mode number, m ¼ 1.
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For the transient response study, all the initial conditions are assumed to be zero. The critical time step

of a conditionally stable finite difference scheme is introduced as a guide (Leech, 1965; Tsui and Tong, 1971)

in the present study. Subsequently, a convergence study is conducted to select a time step, which yields an

accurate solution. The responses of displacements along the circumferential and transverse directions (v and
w) are depicted here corresponding to the (x, y, z) locations of (L=2, C=4, h=2), and (L=2, 0, h=2), respec-
tively. Here, C denotes the complete circumferential length of elliptical shell. The material properties used,

unless otherwise mentioned, are E1=E2 ¼ 40, G12=E2 ¼ G13=E2 ¼ 0:6, G23=E2 ¼ 0:5, m12 ¼ m23 ¼ m13 ¼ 0:25,
a2=a1 ¼ a3=a1 ¼ 1125, E2 ¼ E3 ¼ 109 N/m2, a1 ¼ 10�5 �C�1, q ¼ 1500 kg/m3, where E, G, m and q are

Young�s modulus, shear modulus, Poisson�s ratio and density. The subscripts 1, 2 and 3 refer to the

principal material directions. All the layers are of equal thickness and the ply-angle is measured with respect

to the x-axis (meridional axis). The spatial distributions of loading considered here are––for thermal case:

DT ¼ T0ð2z=hÞ sinðpx=LÞ cosð6py=CÞ; for internal pressure loading case: q ¼ q0 sinðpx=LÞ cosð6py=CÞ.
The details of boundary conditions used are:

Simply supported edges:

v0 ¼ w0 ¼ hy ¼ w1 ¼ by ¼ C ¼ /y ¼ wy ¼ 0 at x ¼ 0; L

Table 3

Comparison of different models with analytical/3D FEM solutions for frequency parameter ð�XX2Þa of cross-ply elliptical shell

L=R0 Theory SS modes AA modes SA modes AS modes

First Second First Second First Second Third First Second Third

6.2832 FSDT5b 0.1658 3.0450 0.2265 3.0557 0.0624 1.0251 6.3913 0.0333 1.023 6.3814

FSDTb ;c 0.167 3.054 0.227 3.066 0.063 1.029 – 0.034 1.028 –

HSDT7 0.1552 2.5913 0.2169 2.6015 0.0624 0.9087 5.2874 0.0333 0.9077 5.2829

HSDT9 0.1551 2.5912 0.2169 2.6014 0.0623 0.9087 5.2873 0.0333 0.9076 5.2828

HSD-

T11b

0.1488 2.5620 0.2139 2.5750 0.0624 0.8902 5.2539 0.0333 0.8932 5.2516

HSD-

T11a

0.1523 2.4921 0.2144 2.5021 0.0623 0.8804 5.0691 0.0333 0.8796 5.0654

HSD-

T13

0.1461 2.4654 0.2116 2.4779 0.0624 0.8637 5.0393 0.0333 0.8661 5.0376

3D

FEMd

0.1454 2.4498 0.2096 2.4571 0.0623 0.8581 5.0064 0.0332 0.8563 5.0006

1.0472 FSDT5b 1.1216 3.8628 1.2612 3.8996 1.7681 3.4298 7.2371 1.4162 2.0683 7.2364

FSDTb ;c 1.144 3.909 1.285 – 1.800 3.446 7.308 1.439 2.098 –

HSDT7 1.1014 3.3671 1.2388 3.4063 1.6342 3.4189 6.0731 1.3707 1.9697 6.0730

HSDT9 1.0995 3.3634 1.2364 3.4022 1.6318 3.4157 6.0689 1.3698 1.9661 6.0687

HSD-

T11b

1.0911 3.3328 1.2295 3.3741 1.6130 3.413 6.0382 1.3626 1.9521 6.0401

HSD-

T11a

1.0943 3.2536 1.2304 3.2927 1.5987 3.4132 5.8368 1.3567 1.9441 5.8363

HSD-

T13

1.0863 3.2254 1.2238 3.2668 1.5811 3.4107 5.8092 1.3510 1.9312 5.8106

3D

FEMd

1.0827 3.209 1.2191 3.245 1.5749 3.4033 5.7749 1.3453 1.9222 5.7727

90�/0�/90�; R0=h ¼ 6, a=b ¼ 1:53 (e ¼ 0:7568); E1=E2 ¼ 15:40, G12=E2 ¼ 0:7924, G23=E2 ¼ 0:3850, E2 ¼ 8:96 GPa, m12 ¼ 0:3; S:

Symmetric, A: Antisymmetric.
a ð�XX2Þ ¼ q0x

2R2
0f12ð1� m13m21Þg=E1.

b Shear correlation factor¼ 1.0.
c Suzuki et al. (1996).
dANSYS (1997) (20 noded solid element; Mesh: 20
 40
 20 on 1=8th model).
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Along the lines of symmetry:

u0 ¼ hx ¼ bx ¼ /x ¼ wx ¼ 0 at x ¼ L=2

v0 ¼ hx ¼ bx ¼ /x ¼ wx ¼ 0 at y ¼ 0

Along the line of anti-symmetry:

u0 ¼ w0 ¼ hx ¼ w1 ¼ bx ¼ C ¼ /x ¼ wx ¼ 0 at y ¼ C=4

Firstly, the dynamic thermal response analysis is carried out considering two-layered unsymmetric thick

elliptical shells [L=R0 ¼ 0:5, R0=h ¼ 5, a=b ¼ 1:25 and 2.5 (e ¼ 0:6 and 0.9165), h ¼ 0:001 m, (0�/90�)]
subjected to thermal load (T0 ¼ 1). The variations of the transverse (w=h) and in-plane (v=h) displacements

with time predicted by different models, as outlined in Table 1, are presented in Fig. 2. It is observed from

Fig. 2 that the maximum amplitudes given using FSDT5 and HSDT7 are very low, and moderately low by

HSDT9 and HSDT11a when compared with those of HSDT11b and HSDT13. Although model HSDT7

appear to be similar to that of HSDT9, there is a noticeable discrepancy in the results between them. This is

attributed to the insufficient representation of membrane response in HSDT7 for the unsymmetric lami-
nates i.e. missing even power terms in z in the in-plane displacements. Furthermore, the response char-

acteristics, in particular, transverse displacement calculated by HSDT11b matches very well with that of

HSDT13 and both exhibit high frequency oscillations because of the participation of thickness stretch

Fig. 2. Transverse and in-plane displacements (w and v) responses of two-layered cross-ply (0�/90�) elliptical cylindrical shells

(L=R0 ¼ 0:5, R0=h ¼ 5) subjected to thermal load (a) a=b ¼ 1:25 (e ¼ 0:6) and (b) a=b ¼ 2:5 (e ¼ 0:9165).
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modes captured due to the presence of C term in the kinematics. It can be noted here that Bhaskar et al.

(1996) have highlighted the importance of thickness-stretch effect while dealing with the three-dimensional

thermo-elastic analysis of thick laminates. It is further seen from the performances of HSDT11a and

HSDT9 as well as HSDT13 and HSDT11b that the introduction of zigzag terms (w
::

) in in-plane dis-
placement descriptions does not affect appreciably the transverse response behavior. It is also noticed that,

with the increase in the value of the eccentricity parameter (e), the nature of the periodic oscillation changes

due to the profound participation of many circumferential modes and the rate of difference in maximum

amplitude shown by HSDT13/HSDT11b with other models also increases, even for a fairly thin shell case

(see Fig. 3). It is further seen that, with the increase in eccentricity parameter, the maximum response level

decreases due to the increase in the stiffness of the shells. In the case of the in-plane displacement along the

circumferential direction (Fig. 2), the response characteristics are somewhat qualitatively similar to those of

transverse motion but the rate of variation in the peak amplitude evaluated by various models, and the
influence of thickness stretching mode are, in general, less in comparison with that of the transverse motion.

However, for the in-plane response case, the interaction of the thickness stretch mode (C) and slope dis-

continuity (w) affects the response as highlighted by the performance of HSDT11b and HSDT13.

Next, for a shell with fairly high eccentricity parameter (e ¼ 0:9165, which corresponds to a=b ¼ 2:5)
considered here, the influence of number of layers on the dynamic characteristics obtained using present

model (HSDT13) is examined along with the performances of the standard models (HSDT11b, HSDT7 and

FSDT5) employed for the free vibration study in the literature (Noor, 1973; Suzuki et al., 1996; Kumar and

Singh, 1995; Soldatos, 1987) and are depicted in Fig. 4. For clarity, the results of HSDT11b are not shown
here as it almost follows the pattern of HSDT13. The present model shows distinctly different displacement

oscillation with higher amplitudes. It is evident from Figs. 2 (b) and 4 (b) that, with increase in number of

layers, the amplitude of the response decreases as expected due to the weakening of bending-stretching

Fig. 3. The effect of eccentricity parameter (e) on the transverse displacement (w) for eight-layered cross-ply elliptical cylindrical shells

(L=R0 ¼ 0:5, R0=h ¼ 25, (0�/90�)4) subjected to thermal loading.
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couplings and the participation of different circumferential modes appears to be less. However, it is inferred

that the effect of the directional stiffnesses, provided by symmetric/unsymmetric lay-up can influence the

response pattern.

Fig. 5 highlights the influences of radius-to-thickness and length-to-radius ratios on the dynamic be-

havior of elliptical shells. It can be viewed that, for a fairly short shell considered here (L=R0 ¼ 0:5), the
effect of thickness stretching mode on the variation of the displacement with time decreases with the in-

crease in the value of R0=h. However, the model HSDT13 predicts distinctly different response in com-
parison with those of FSDT5 even for a fairly thin shell of R0=h ¼ 50 but the discrepancy in the results

between these theories is considerably less, as expected. It is also observed from Fig. 5 that, for a long shell

(L=R0 ¼ 5), the interaction of thickness stretching mode on the response is noticeable only when the shell is

very thick. Furthermore, it reveals that, with increase in R0=h, the discrepancy in the results obtained using

higher- and first-order theories, decreases rapidly for long shell compared to those of short one. It can be

further opined that, in general, HSDT11b model can closely approximate the complete model HSDT13 for

accurately yielding the characteristics of multi-layered short thick shells as well as fairly thin shell under

thermal loads.
Similar studies are conducted for the response characteristics of shell subjected to internal pressure

(q0 ¼ 100 N/m2) through various structural models. For the sake of clarity, the results pertaining to FSDT5

Fig. 4. The effect of number of layers on the displacements (w, v) for the elliptical cylindrical shell (a=b ¼ 2:5 (e ¼ 0:9165), L=R0 ¼ 0:5,

R0=h ¼ 5) subjected to thermal loading: (a) three-layer (0�/90�/0�) and (b) eight-layer (0�/90�)4.
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Fig. 5. The influence of thickness ratio on the transverse displacement (w) response for the elliptical cylindrical shells ((0�/90�)4,
a=b ¼ 1:75 (e ¼ 0:8207)) subjected to thermal load: (a) L=R0 ¼ 0:5 (left side) and (b) L=R0 ¼ 5 (right side).
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and HSDT7 are omitted from the plots as they under estimate the response values like in the case of

thermal loads. The results obtained for the two-layered elliptical shells [L=R0 ¼ 0:5, R0=h ¼ 5, a=b ¼ 1:25
and 2.5 (e ¼ 0:6 and 0.9165), 0�/90�] are described in Fig. 5. It is noticed that the differences in the initial

response evaluated among various models are less. However, with the increase in the response time, the
variation of displacement patterns depends on the type of model employed. It is further inferred that some

reduction in the peak amplitude and shift in the response period are shown from the performance of

different models. It is seen that the response periods predicted by models HSDT9 and HSDT11b are almost

same whereas the models HSDT11a and HSDT13 yield nearly similar behavior. Although the effect of

thickness stretching mode is to introduce high frequency oscillations in the response, the intensity is very

less compared to those of thermal case. In general, it can be argued while studying the mechanical load case

that the model having zigzag variation in the in-plane displacement (HSDT11a) can approximate to some

extent the complete model (Fig. 6).
The effect of thickness and length ratios on the response of shells with internal pressure is highlighted in

Fig. 7. It is evident from this Figure that, for short shells, the influence of higher-order model rapidly

decreases with the increase in the thickness ratio in comparison with those of thermal case whereas it makes

little difference for the long shell case, even for the thick situation.

Fig. 6. Transverse and in-plane displacements (w and v) responses of two-layered cross-ply (0�/90�) elliptical cylindrical shells

(a=b ¼ 1:25 (e ¼ 0:6), L=R0 ¼ 0:5, R0=h ¼ 5) subjected to internal pressure loading.
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Fig. 7. The influence of thickness ratio on the displacement (w) for the elliptical cylindrical shell ((0�/90�)4; a=b ¼ 1:75 (e ¼ 0:8207))

under internal pressure: (a) L=R0 ¼ 0:5 (left side); (b) L=R0 ¼ 5 (right side).
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5. Conclusions

The effectiveness of the present formulation (HSDT13) is demonstrated considering dynamic analysis of

thick laminated cross-ply elliptical shells subjected to thermal and mechanical loads. Parametric studies are
made to provide some insight into the effects of variations in the degree of non-circularity, length and

thickness ratios on the response characteristics of cylinders. The performance of other possible higher-order

models is also brought out. The inclusion of thickness stretching terms (C) in the transverse displacement

field is essential for the thermal response study compared to the slope discontinuity terms (w) in the in-plane

displacement functions. For the mechanical loading case, both the w and C in the displacement fields are to

some extent important in evaluating the response characteristics. It is also revealed that, for short/long

shells under thermal load, the influence of higher-order model is considerable even for fairly thin situation

whereas, for mechanical case, it is important for thick short shells.

Appendix A

The various submatrices involved in Eqs. (5b) and (5c) are

½Z1	 ¼

1 0 0 0 0

0
1

1þ z=R
0 0 0

0 0 1 0 0

0 0 0
1

1þ z=R
1

2
66666664

3
77777775
; ½Z2	 ¼ z½Z1	; ½Z3	 ¼

z2 0 0 0

0
z2

1þ z=R
0 0

0 0 0 0

0 0
z2

1þ z=R
z2

2
666666664

3
777777775
;

½Z4	 ¼ z½Z3	; ½Z5	 ¼

Sk 0 0 0

0
Sk

1þ z=R
0 0

0 0 0 0

0 0
Sk

1þ z=R
Sk

2
666666664

3
777777775
; ½Z6	 ¼

1 0

0 1

" #
; ½Z7	 ¼ z½Z6	; ½Z8	 ¼ z2½Z6	;

½Z9	 ¼ Sk;z½Z6	; ½Z10	 ¼
0 0 0 0 0

1

1þ z=R
z

1þ z=R
z2

1þ z=R
z3

1þ z=R
Sk

1þ z=R

2
4

3
5 ðA:1Þ

fe1g ¼

u0;x
v0;y þ w0

R

w1

u0;y
v0;x

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; fe2g ¼

hx;x
hy;y þ w1

R

2C

hx;y
hy;x

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; fe3g ¼

bx;x
by;y þ C

R

bx;y
by;z

8>>><
>>>:

9>>>=
>>>;
;

fe4g ¼

/x;x

/y;y

/x;y

/y;x

8>>><
>>>:

9>>>=
>>>;
; fe5g ¼

wx;x

wy;y

wx;y

wy;x

8>>><
>>>:

9>>>=
>>>;

ðA:2Þ
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fe6g ¼
hx þ w0;x

hy

� �
; fe7g ¼

2bx þ w1;x

2by

( )
; fe8g ¼

3/x þ C;x

3/y

( )
;

fe9g ¼
wx

wy

( )
; fe10g ¼

w0;y �
v0
R

w1;y �
hy
R

C;y �
by
R

�
/y

R

�
wy

R

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ðA:3Þ

O1 and O2 are null matrices of size 4
 2 and 4
 5, respectively.
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