INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 39 (2002) 5945-5962

Dynamic analysis of laminated cross-ply composite
non-circular thick cylindrical shells using higher-order theory

M. Ganapathi *, B.P. Patel, D.S. Pawargi

Institute of Armament Technology, Girinagar, Pune 411 025, India
Received 28 January 2002; received in revised form 16 August 2002

Abstract

Here, the dynamic analysis of laminated cross-ply composite non-circular thick cylindrical shells subjected to
thermal/mechanical load is carried out based on higher-order theory. The formulation accounts for the variation of the
in-plane and transverse displacements through the thickness, abrupt discontinuity in slope of the in-plane displacements
at the interfaces, and includes in-plane, rotary inertia terms, and also the inertia contributions due to the coupling
between the different order displacement terms. The strain—displacement relations are accurately accounted for in the
formulation. The shell responses are obtained employing finite element approach in conjunction with direct time in-
tegration technique. A detailed parametric study is carried out to bring out the effects of length and thickness ratios,
eccentricity parameters and number of layers on the thermal/mechanical response characteristics of non-circular shells.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In many engineering applications, the cylinders are used as primary structural members because of their
high structural efficiency. Due to the advent of composite materials, composite cylinders are of particular
interest in the design of lightweight and efficient structures, especially in the aerospace industry. While
circular cylinders are perhaps the most common, due to the design considerations, for instance in sub-
mersibles, flight structures etc., cylindrical shells with non-circular cross-sections are preferred. Most of
these structures are, in general, subjected to thermal/mechanical loads and dynamic environment during
their operation. Hence, the study of dynamic behavior of such non-circular cylindrical shell structures
through accurate modeling is important in assessing the failure and has recently attracted the attention of
researchers.

The vibration analysis of circular cylindrical shells has received considerable attention in the litera-
ture and has been reviewed by Leissa (1973), and, more recently, by Noor (1990), Noor and Burton (1990),
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Qatu (1992) and Soldatos (1994). However, the number of studies that deal with the behavior of non-
circular cylinders is rather limited and reviewed by Soldatos (1999). This is possibly due to the difficulty
introduced in governing equations because of the cross-sectional radius of curvature as a function of an arc
co-ordinate. It may be concluded from the literature that few contributions are available concerning with
free vibration analysis of anisotropic laminated non-circular cylindrical shells compared to those of iso-
tropic case, and they are cited here. The free vibration of laminated non-circular case has been analyzed
employing classical theory (Soldatos and Tzivanidis, 1982; Soldatos, 1984; Hui and Du, 1986; Suzuki et al.,
1994), and using first-order shear deformation theory (Noor, 1973; Kumar and Singh, 1995; Suzuki et al.,
1996). The theory assuming parabolic variation of thickness shear for the study of composite non-circular
shells has been attempted (Soldatos, 1987; Kumar and Singh, 1996). The Galerkin procedure was employed
in the work of Soldatos and Tzivanidis (1982), Soldatos (1984), Soldatos (1987) and Hui and Du (1986)
whereas the power series expansion method was adopted in the work of Suzuki et al. (1994, 1996). Noor
(1973) solved the problem using multilocal difference discretization method while the energy approach
was applied by Kumar and Singh (1995, 1996). In all these investigations, the analysis has been carried out
using analytical approaches, and has been limited to free vibrations of cross-ply non-circular shells. To the
best of authors’ knowledge, there is no study available in the literature pertaining to the dynamic response
of non-circular composite cylindrical shells, and even isotropic case has not received adequate consid-
eration, except the work of Cheung et al. (1991) that concerns with thin isotropic shell based on classi-
cal theory.

It can be opined from the existing literature that, in general, the first-order theory that requires an ar-
bitrary shear correction to the transverse shear stiffness is fairly accurate for the estimation of global
behaviors like deflections, fundamental frequency and buckling load of moderately thick composite lam-
inates. However, it is inadequate for the estimation of higher-order frequencies, mode shapes, large de-
flections and distribution of stresses. This has necessitated the introduction of higher-order function in the
displacement model, and layer-wise theory for the study of circular cylindrical shells (Bhimaraddi, 1984;
Bhaskar and Vardan, 1991; Di Sciuva and Icardi, 1993; He, 1994; Icardi, 1998; Ganapathi et al., 2002). To
the authors’ knowledge, the application of such models involving higher-order expansions of the dis-
placement fields in powers of the thickness co-ordinate yielding both the transverse shear and the transverse
normal deformation is not commonly available yet in the literature for the analysis of laminated non-
circular cylindrical cases. Furthermore, the studies employing the improved approximate technique such as
finite element method, which can easily handle a more general case of loading, complicated boundary
conditions and complexity due to the advanced composite materials, for the non-circular cylindrical case
seems to be scarce in the literature.

Here, a higher-order theory with through the thickness approximation of in-plane and transverse dis-
placements for the laminates (Makhecha et al., 2001a; Ganapathi et al., 2002) is extended to analyze the
transient response characteristics of laminated cross-ply non-circular cylindrical shells subjected to thermal/
mechanical loads based on finite element procedure. The formulation is, general, in the sense that it is
applicable for arbitrary variation in the cross-section of the cylindrical shells. The element used is a C°
eight-noded field consistent shell element with 13 degrees of freedom per node. The strain—displacement
relationship is accurately introduced in the formulation. All the inertia terms, due to the parts resulting
from first-order model, the higher-order displacement function, and the coupling between the different
order displacements are included in evaluating the kinetic energy. The structural responses are evaluated
using Newmark integration scheme. The accuracy of the present model is checked against the available
analytical/three-dimensional solutions. A detailed parametric study is carried out to bring out the effects of
variations of non-circularity, thickness and length ratios, and number of layers on the dynamic charac-
teristics of non-circular cross-ply cylindrical shells with elliptical cross-section. The results evaluated here
demonstrate the profound importance of the inclusion of through-thickness variation and slope disconti-
nuity in the displacement kinematics on the response of non-circular shells.
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2. Formulation

A laminated composite non-circular cylindrical shell is considered with the co-ordinates x along the
meridional direction, y along the circumferential direction and z along the thickness direction having origin
at the middle-surface of the shell as shown in Fig. 1. Based on Taylor’s series expansion method for de-
ducing the two-dimensional formulation of a three-dimensional elasticity problem, the in-plane displace-
ments #* and v*, and the transverse displacement w* for the kth layer, are assumed as

u' (x,y,2,1) = ug(x,y, 1) + 20:(x, 3, 1) + 2B, (x, »,1) + 2 p,(x, 3, 1) + S*Y.(x, 1)
oy, 2,0) = vo(x,3,1) +20,(x, 3, 1) + 2B, (x, v, 1) + 2 b, (x, 3, 1) + S*Y,,(x,,1) (1)
wi(x,p,2,8) = wo(x,,8) + 2w (x, 1) + 2T (x, 1, 1)

Here, uy, vy, wy are the displacements of a generic point on the reference surface; 0., 0, are the rotations of
normal to the reference surface about the y and x axes, respectively; wi, B, B,, I', ¢, ¢, are the higher-order
terms in the Taylor’s series expansions, defined at the reference surface. i, and v, are generalized variables
associated with the zigzag function, S*.

The zigzag function, S*, as given in the work of Murukami (1986), is defined by

Sk = 2(—1)k2k//’lk (2)

where z; is the local transverse co-ordinate with its origin at the centre of the kth layer and #; is the cor-
responding layer thickness. Thus, the zigzag function is piecewise linear with values of —1 and 1 alternately
at the different interfaces. The ‘zigzag’ function, as defined above, takes care of the inclusion of the slope
discontinuity of «# and v at the interfaces of the laminate as observed in exact three-dimensional elasticity
solutions of thick laminated composite structures. The use of such function is more economical than a
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Fig. 1. Generalized co-ordinate system and cross-sectional details of the elliptical shell.
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discrete layer approach of approximating the displacement variations over the thickness of each layer
separately. Although both these approaches account for slope discontinuity at the interfaces, in the discrete
layer approach the number of unknowns increases with the increase in the number of layers, whereas it
remains constant in the present approach.

The strains in terms of middle-surface deformation, rotations of normal, and higher-order terms asso-
ciated with displacements for kth layer are as,

a-{z)-{3)

The vector {e,,} includes the bending and membrane terms of the strain components and vector {&}
contains the transverse shear strain terms. These strain vectors are accurately introduced in the formulation

and are defined as (Kraus, 1967; Bhaskar and Vardan, 1991; Rao and Ganesan, 1996; Qatu, 1999)
k

Sjav u,X
&y (%, +w"/R)/(1 +z/R)
Ebm _ &2z _ z
{ &s } B yxy B uky/(l +Z/R) + U{; (43)
Vxz u{cz + W{;
Vi v+ (W — 0" /R)/(1 +z/R)

where the subscript comma denotes the partial derivative with respect to the spatial co-ordinate succeeding
it. R, the principal radii of curvature in the circumferential direction, is function of circumferential co-
ordinate y. The variation of R in the circumferential direction depends on the type of cross-section i.e. for
instance, for elliptical cross-section, R can be described as (Suzuki et al., 1996)

R = (b*/Ro)(1 + pycos20) 2 (4b)

where Ry(= [(a® + b?)/2]'/?) is the representative radius, y, = (a*> — b?)/(a* + b*); and 0 is a variable that
denotes an angle between the tangent at the origin of y (circumferential co-ordinate) and the one at any
point on the middle-surface. a, b are the lengths of semi-major and semi-minor axes of elliptical cross-
section.

Using the kinematics given in Eq. (1), Eq. (4a) can be rewritten as

{md - (5)

&
where
[Z] _ Zl 22 23 Z4 Z5 01 01 01 01 02 (Sb)
o Ol of O 0 Z 7z Zy Zy Zy
{&}={e1 & & & & & & & & & }T (5¢)
The various submatrices involved in Egs. (5b) and (5¢) are given in Appendix A.
The thermal strain vector {&} is represented as
Exx Oy
‘?W %y
_ e o
{&} = fo [~ AT o (5d)
. 0
& 0
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where AT is the rise in temperature and is generally represented as function of x, y, and z. o, o, o, and o,
are thermal expansion coefficients in the shell co-ordinates and can be related to the thermal coefficients (o,
o, and ¢3) in the material principal directions.

The constitutive relations for an arbitrary layer &, in the laminated shell (x, y,z) co-ordinate system can
be expressed as

O Ci Cn Cs Cy 0 0 Exr — Eur
Oy Chh Cn Cy Cu O 0 Eyy — &y
(o} = o= | _ [T {e) = ?13 (:723 ?33 ?34 0 0 &z — é_zz (©6)
Tyy Cs Cu Cy Cu O 0 Yy = Py
Taz 0 0 0 0 GCss Cs Vez = Yz
) | 0 0 0 0 Css Ces ] Ve = Ve

where the elements of the stiffness coefficients, C‘f‘j (i,j = 1,6) can be obtained using the appropriate
transformation on the stiffness matrix [Cy] corresponding to material principal directions, as outlined in the
literature (Herakovich, 1998). {o}, {¢} and {&} are stress, strain, and thermal strain vectors due to rise in
temperature, respectively.

The governing equations for the shell structure are obtained by applying Lagrangian equations of
motion given by

%[a(r — Up) /08, — [0(T — Ur) /3] =0, i=1,....n (7)
where T is the Kinetic energy; Ur is the total potential energy consisting of strain energy contributions due
to the in-plane and transverse stresses, and work done by the externally applied mechanical loads, re-
spectively. {0} = {01,05,...,0;,...,0,}" is the vector of generalized displacements and &, are independent.
A dot over the variables represents the partial derivative with respect to time. The superscript T refers the
transpose of a matrix/vector.

The kinetic energy of the shell is given by

T(é):%//[kz}z; /h:wpk{uk i wk}{uk * wk}T<1+%)dz]dxdy 8)

where p, is the mass density of the kth layer. A, ;. are the z co-ordinates of laminate corresponding to the
inner and outer surfaces of the kth layer.
Using the kinematics given in Eq. (1), Eq. (8) can be rewritten as

6= [ [ [Z [ pk{d}T[zﬂzw}(l+1§)dz]dxdy Q
where

{dY' ={i v wo 0 0, w B B T ¢ &, ¥, ¥}

and
1 00 z 00220 022 0 8 0
Zl=10 1 0 0 z 0 0 22 0 0 2 0 S
00100z 00200 0 0
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The potential energy functional Ur is given by,

:%//[ /:u (o) {s} ]dxdy //qwdxdy (10)

where ¢ is the distributed force acting on the inner surface of the shell.
Using Egs. (5a)—(5d), and (6), the potential energy functional Ur given by Eq. (10) can be rewritten as

-/ [Z /h:”"({E}T[zﬁcknzm}—2{E}T[zﬁck1{a}+{a}T[c'1{a}>(1+;)dz]dxdy

—//qwdxdy (11)

The governing equations obtained by substituting Egs. (9) and (11) in Eq. (7) can be solved analytically/
numerically.

Here, finite element approach, using an eight-noded quadrilateral shell element having thirteen degrees of
freedoms/generalized displacements per node ({57} = {uj, vh, wi, 0, 0, wi, B\, B, T", ¢, ¢}, 0, %}T for ith

node) is adopted for solving the governing equations. To obtain the kinetic and the total potential energies
for the element, the vector {d} and the strain vector {&} involved in Egs. (9) and (11) are expressed in terms
of shape/interpolation functions, their derivatives (Zienkiewicz, 1971), and the vector of element level
degrees of freedoms/generalized displacements {J°} as

{d}Bxl = [H]13x104{56}104x1; {5}35x1 = [B]35x104{5e}104x1 (12)

where
{0 = {{o5}" (o537 (o537 (o937 (o817 (o} {5} {s}')

The kinetic and the total potential energy expressions, simplified using Eq. (12), are given as

1% = 3 (5) ) (13)

e 1 € e € € e € e 1 - ks = a = z
Un() =5 (Y TIRHO) — (0 ) — (YR + [ ] [Z [ s (i +§)dz]dxdy
k=1 k
(14)
The elemental governing equations, obtained by substituting Eqgs. (13) and (14) in Eq. (7), are

Mo} + KUY = {Fe} + {FRy) (15)

where the elemental mass [M°] and stiffness [K°] matrices, and thermal/mechanical load vectors ({F5} and
{F5}) can be expressed as

[Me}=//[ / oty 2"y (142 ]dxdy
SE //[ / @2 1(1+§)dz]dxdy (16)
= [Z [ e (4 )dz]dxdy
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and

(w= [ [ e

The coefficients of mass and stiffness matrices, and the load vectors involved in governing Eq. (15) can be
rewritten as the product of term having thickness co-ordinate z alone and the term containing x and y. In
the present study, while performing the integration, terms having thickness co-ordinate z are explicitly
integrated whereas the terms containing x and y are evaluated using full integration with 5 x 5 points Gauss
integration rule. Following the usual finite element assembly procedure (Zienkiewicz, 1971), the governing
equation for the forced response of the laminated shell are obtained as

M1} + [K]“{0} = {Fr}° + {Fu)}® (17)

where [M©] and [K] are the global mass and stiffness matrices. {Fr}°, {Fy}° are the global thermal and
mechanica load vectors, respectively. {d}° and {6} are the global acceleration and displacement vectors
respectively.

The solutions of Eq. (17) can be obtained using Newmark’s direct time integration method (Subbaraj
and Dokainish, 1989).

3. Element description

The element employed here is a simple C° continuous, shear flexible and serendipity type of quadrilateral
shell element (HSDT13) with 13 nodal degrees of freedom as outlined in the formulation. It is developed
based on field consistency approach (Pratap, 1985).

If the interpolation functions for an eight-noded element are used directly to interpolate the thirteen field
variables (uo, vo, wo, Oy, 0y, wi, By, By, I's ¢y, ¢y, Yy, ¥) in deriving the membrane and shear strains, the
element will lock and show oscillation in the membrane and shear stresses. Field consistency requires that
the membrane and the transverse shear strains must be interpolated in a consistent manner. Thus, the wy
term in the expression for membrane strain {¢;} (second strain component) given in Eq. (A.2) have to be
consistent with the field functions vy,. Similarly, the terms 6, and (0,,v,) in the expression for transverse
shear strains ({&} and {&10}) given in Eq. (A.3) have to be consistent with the field functions wy, and wy,,
respectively, as outlined in the work of Pratap (1985). This is achieved by using a field-redistributed sub-
stitute shape functions to interpolate those specific terms that must be consistent. The element thus derived
is tested for its basic properties and is found free from the rank deficiency, shear/membrane locking, and
poor convergence syndrome. For the sake of brevity, the development of the element based on such dis-
placement approximation, and its performances are omitted, as they are available in the literature
(Ganapathi and Makhecha, 2001; Makhecha et al., 2001a; Makhecha et al., 2001b; Makhecha et al., 2001c¢;
Ganapathi et al., 2002) and it follows the standard procedure for the given kinematics and structural
theory. The element HSDT13 is applicable for both thick and thin situations.

The finite element represented as per the kinematics given in Eq. (1), is referred as HSDT13. Five more
alternate standard discrete models are proposed, to study the influence of higher-order terms in the dis-
placement functions, whose displacement fields are deduced from the original element by deleting the
appropriate degrees of freedom (w; and I = 0; or = 0; or ¥, w; and I" = 0; or z? terms, i, w; and I' = 0;
or dropping all the higher-order terms). These alternate models, and the corresponding nodal degrees of
freedom are shown in Table 1.
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Table 1

Alternate eight-noded finite element models considered for parametric study
Finite element model Degrees of freedom per node
HSDT13 (Present) uo, Vo, wo, O, Oy, wi, By, By Iy by &)y Wi, 4y,
HSDTlla uo, Vo, Wo, O, 0y, By, ﬂy, o ¢y9 78 ‘//y
HSDTI11b Uo, Vo, Wo, Ox, 0y, wi, By, s Ty ¢y, O,
HSDT9 uy, vo, Wo, O, Oy, B Bys by @,
HSDT?7 Uy, Vo, Wo, Oy, 0, ¢, ¢y
FSDTS5 Uy, Vo, Wo, Os, 0,

4. Results and discussion

The study, here, is mainly focused on dynamic response analysis of simply supported non-circular cross-
ply cylindrical shells, with elliptical cross-section, subjected to thermal/mechanical loads, considering
various higher-order theories possible within the scope of assumed kinematics employed in the formulation.
Since the higher-order theory, in general, is required for the accurate analysis of thick composite structures,
the emphasis in the present work is placed on the laminated shells with radius-to-thickness ratios < 50.
For the detailed parametric study, the shear correction factor is taken as 5/6 for the first-order model.
Furthermore, the influences of various parameters such as radius-to-thickness (R,/4) and length-to-radius
(L/Ry) ratios, eccentricity (¢ = [1 — (b/a)z]l/ %) and number of layers (N) on the response characteristics of
shells are analyzed. Further, all the strain energy terms are evaluated using exact numerical integration
scheme as the element employed is based on the field consistency approach.

Based on the progressive mesh refinement, a 16 x 8 grid mesh (circumferential and meridional direc-
tions) is found to be adequate to model the one-eighth of the shells (quarter in cross-section and half in
length) for the present analysis. Before proceeding for the detailed study, the formulation developed herein
is validated considering the free vibration of laminated cross-ply circular and elliptical cylindrical shells
against analytical/three-dimensional solutions (Ye and Soldatos, 1997; Suzuki et al., 1996; ANSYS, 1997)
and they are shown in Tables 2 and 3. For the validation purpose, the value for the shear correction factor
is assumed as 1 in the present FSDTS5 as the same value is assumed in the FSDT model of Suzuki et al.
(1996). It may be noted here that the solutions obtained for the elliptical case using present FSDTS5 agree
well with those of analytical approach (Suzuki et al., 1996). However, it is seen from these tables that the
results of present model HSDT13 agree well with the three-dimensional solutions. For the dynamic re-
sponse analysis, the solutions obtained using the present formulation agree very well with the available
numerical results, based on the classical theory, for an isotropic case (Cheung et al., 1991). For the sake of
brevity, these results are not presented.

Table 2
Verification of present results with 3D elasticity solutions for natural frequency parameter Q (= wR+/p/E,) of a simply-supported
cross-ply circular cylindrical shell

Circumferential R/h
wave number, n

5 10 20
HSDT13 3D analytical HSDTI13 3D analytical HSDT13 3D analytical
solution (Ye and solution (Ye and solution (Ye and
Soldatos, 1997) Soldatos, 1997) Soldatos, 1997)
1 0.339297 0.339 0.331522 0.332 0.329408 0.329
2 0.306985 0.306 0.224928 0.225 0.197009 0.197
3 0.594289 0.591 0.330063 0.329 0.194639 0.194

0°/90°/0°, E| /E; = 25; L/R = 5; Longitudinal mode number, m = 1.
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Table 3 B
Comparison of different models with analytical/3D FEM solutions for frequency parameter (2°)* of cross-ply elliptical shell
L/Ry Theory  SS modes AA modes SA modes AS modes
First Second  First Second  First Second  Third First Second  Third
6.2832  FSDT5" 0.1658 3.0450 0.2265 3.0557 0.0624 1.0251 6.3913 0.0333 1.023 6.3814
FSDT®¢  0.167 3.054 0.227 3.066 0.063 1.029 - 0.034 1.028 -
HSDT7 0.1552 2.5913 0.2169 2.6015 0.0624 0.9087 5.2874 0.0333 0.9077 5.2829
HSDT9 0.1551 2.5912 0.2169 2.6014 0.0623 0.9087 5.2873 0.0333 0.9076 5.2828
HSD- 0.1488 2.5620 0.2139 2.5750 0.0624 0.8902 5.2539 0.0333 0.8932 5.2516
T11b
HSD- 0.1523 2.4921 0.2144 2.5021 0.0623 0.8804 5.0691 0.0333 0.8796 5.0654
Tlla
HSD- 0.1461 2.4654 0.2116 2.4779 0.0624 0.8637 5.0393 0.0333 0.8661 5.0376
T13
3D 0.1454 2.4498 0.2096 2.4571 0.0623 0.8581 5.0064 0.0332 0.8563 5.0006
FEM¢
1.0472  FSDT5® 1.1216 3.8628 1.2612 3.8996 1.7681 3.4298 7.2371 1.4162 2.0683 7.2364
FSDT¢ 1.144 3.909 1.285 - 1.800 3.446 7.308 1.439 2.098 -
HSDT7 1.1014 3.3671 1.2388 3.4063 1.6342 3.4189 6.0731 1.3707 1.9697 6.0730
HSDT9  1.0995 3.3634 1.2364 3.4022 1.6318 3.4157 6.0689 1.3698 1.9661 6.0687
HSD- 1.0911 3.3328 1.2295 3.3741 1.6130 3.413 6.0382 1.3626 1.9521 6.0401
T11b
HSD- 1.0943 3.2536 1.2304 3.2927 1.5987 3.4132 5.8368 1.3567 1.9441 5.8363
Tlla
HSD- 1.0863 3.2254 1.2238 3.2668 1.5811 3.4107 5.8092 1.3510 1.9312 5.8106
T13
3D 1.0827 3.209 1.2191 3.245 1.5749 3.4033 5.7749 1.3453 1.9222 5.7727
FEM¢

90°/0°/90° Ry/h =6, a/b=1.53 (¢=0.7568); E\/E, =15.40, G\2/E, =0.7924, G /E, =0.3850, E; =8.96 GPa, v;; =0.3; S:
Symr‘{letric, A: Antisymmetric.
3(92) = poszS{IZ(l — 17131721)}/E1.

®Shear correlation factor = 1.0.

¢Suzuki et al. (1996).
dANSYS (1997) (20 noded solid element; Mesh: 20 x 40 x 20 on 1/8th model).

For the transient response study, all the initial conditions are assumed to be zero. The critical time step
of a conditionally stable finite difference scheme is introduced as a guide (Leech, 1965; Tsui and Tong, 1971)
in the present study. Subsequently, a convergence study is conducted to select a time step, which yields an
accurate solution. The responses of displacements along the circumferential and transverse directions (v and
w) are depicted here corresponding to the (x, y, z) locations of (L/2, C/4, h/2), and (L/2, 0, h/2), respec-
tively. Here, C denotes the complete circumferential length of elliptical shell. The material properties used,
unless otherwise mentioned, are E,/E, = 40, G;5/E, = G13/E;, = 0.6, Go3/E; = 0.5, vip = vp3 = vi3 = 0.25,
sy foy = o3 /oy = 1125, E; = E3 = 10° N/m?, o; = 107 °C~!, p = 1500 kg/m>, where E, G, v and p are
Young’s modulus, shear modulus, Poisson’s ratio and density. The subscripts 1, 2 and 3 refer to the
principal material directions. All the layers are of equal thickness and the ply-angle is measured with respect
to the x-axis (meridional axis). The spatial distributions of loading considered here are—for thermal case:
AT = Ty(2z/h) sin(nx/L) cos(6my/C); for internal pressure loading case: ¢ = g sin(nx/L) cos(6my/C).

The details of boundary conditions used are:

Simply supported edges:
w=w=0,=w==r=¢,=y, =0 atx=0,L
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Along the lines of symmetry:

w=0,=f =¢ =y =0 atx=0L/2

UOZQXZﬁx:qu:l/jx:() aty:O
Along the line of anti-symmetry:
ug=wy=0r=w=p=Ir=¢, =y, =0 aty=C/4

Firstly, the dynamic thermal response analysis is carried out considering two-layered unsymmetric thick
elliptical shells [L/Ry = 0.5, Ry/h =5, a/b=1.25 and 2.5 (¢=0.6 and 0.9165), 7 =0.001 m, (0°/90°)]
subjected to thermal load (7, = 1). The variations of the transverse (w/h) and in-plane (v/k) displacements
with time predicted by different models, as outlined in Table 1, are presented in Fig. 2. It is observed from
Fig. 2 that the maximum amplitudes given using FSDTS and HSDT7 are very low, and moderately low by
HSDT9 and HSDT11a when compared with those of HSDT11b and HSDT13. Although model HSDT7
appear to be similar to that of HSDT9, there is a noticeable discrepancy in the results between them. This is
attributed to the insufficient representation of membrane response in HSDT7 for the unsymmetric lami-
nates i.e. missing even power terms in z in the in-plane displacements. Furthermore, the response char-
acteristics, in particular, transverse displacement calculated by HSDT11b matches very well with that of
HSDT13 and both exhibit high frequency oscillations because of the participation of thickness stretch
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Fig. 2. Transverse and in-plane displacements (w and v) responses of two-layered cross-ply (0°/90°) elliptical cylindrical shells
(L/Ry = 0.5, Ry/h = 5) subjected to thermal load (a) a/b = 1.25 (¢ = 0.6) and (b) a/b = 2.5 (¢ = 0.9165).
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modes captured due to the presence of I' term in the kinematics. It can be noted here that Bhaskar et al.
(1996) have highlighted the importance of thickness-stretch effect while dealing with the three-dimensional
thermo-elastic analysis of thick laminates. It is further seen from the performances of HSDTIla and
HSDT9 as well as HSDT13 and HSDT11b that the introduction of zigzag terms (/) in in-plane dis-
placement descriptions does not affect appreciably the transverse response behavior. It is also noticed that,
with the increase in the value of the eccentricity parameter (¢), the nature of the periodic oscillation changes
due to the profound participation of many circumferential modes and the rate of difference in maximum
amplitude shown by HSDT13/HSDT11b with other models also increases, even for a fairly thin shell case
(see Fig. 3). It is further seen that, with the increase in eccentricity parameter, the maximum response level
decreases due to the increase in the stiffness of the shells. In the case of the in-plane displacement along the
circumferential direction (Fig. 2), the response characteristics are somewhat qualitatively similar to those of
transverse motion but the rate of variation in the peak amplitude evaluated by various models, and the
influence of thickness stretching mode are, in general, less in comparison with that of the transverse motion.
However, for the in-plane response case, the interaction of the thickness stretch mode (I") and slope dis-
continuity (i) affects the response as highlighted by the performance of HSDT11b and HSDT13.

Next, for a shell with fairly high eccentricity parameter (¢ = 0.9165, which corresponds to a/b = 2.5)
considered here, the influence of number of layers on the dynamic characteristics obtained using present
model (HSDT13) is examined along with the performances of the standard models (HSDT11b, HSDT7 and
FSDT5) employed for the free vibration study in the literature (Noor, 1973; Suzuki et al., 1996; Kumar and
Singh, 1995; Soldatos, 1987) and are depicted in Fig. 4. For clarity, the results of HSDT11b are not shown
here as it almost follows the pattern of HSDT13. The present model shows distinctly different displacement
oscillation with higher amplitudes. It is evident from Figs. 2 (b) and 4 (b) that, with increase in number of
layers, the amplitude of the response decreases as expected due to the weakening of bending-stretching
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Fig. 3. The effect of eccentricity parameter (¢) on the transverse displacement (w) for eight-layered cross-ply elliptical cylindrical shells
(L/Ry = 0.5, Ry/h = 25, (0°/90°)4) subjected to thermal loading.
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Fig. 4. The effect of number of layers on the displacements (w, v) for the elliptical cylindrical shell (a/b = 2.5 (¢ = 0.9165), L/R, = 0.5,
Ry/h = 5) subjected to thermal loading: (a) three-layer (0°/90°/0°) and (b) eight-layer (0°/90°),.

couplings and the participation of different circumferential modes appears to be less. However, it is inferred
that the effect of the directional stiffnesses, provided by symmetric/unsymmetric lay-up can influence the
response pattern.

Fig. 5 highlights the influences of radius-to-thickness and length-to-radius ratios on the dynamic be-
havior of elliptical shells. It can be viewed that, for a fairly short shell considered here (L/Ry = 0.5), the
effect of thickness stretching mode on the variation of the displacement with time decreases with the in-
crease in the value of Ry/h. However, the model HSDT13 predicts distinctly different response in com-
parison with those of FSDTS even for a fairly thin shell of Ry/h = 50 but the discrepancy in the results
between these theories is considerably less, as expected. It is also observed from Fig. 5 that, for a long shell
(L/Ry = 5), the interaction of thickness stretching mode on the response is noticeable only when the shell is
very thick. Furthermore, it reveals that, with increase in Ry /4, the discrepancy in the results obtained using
higher- and first-order theories, decreases rapidly for long shell compared to those of short one. It can be
further opined that, in general, HSDT11b model can closely approximate the complete model HSDT13 for
accurately yielding the characteristics of multi-layered short thick shells as well as fairly thin shell under
thermal loads.

Similar studies are conducted for the response characteristics of shell subjected to internal pressure
(g0 = 100 N/m?) through various structural models. For the sake of clarity, the results pertaining to FSDT5
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Fig. 5. The influence of thickness ratio on the transverse displacement (w) response for the elliptical cylindrical shells ((0°/90°),,
a/b=1.75 (¢ = 0.8207)) subjected to thermal load: (a) L/Ry = 0.5 (left side) and (b) L/Ry = 5 (right side).
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and HSDT7 are omitted from the plots as they under estimate the response values like in the case of
thermal loads. The results obtained for the two-layered elliptical shells [L/Ry = 0.5, Ry/h =5, a/b = 1.25
and 2.5 (¢ = 0.6 and 0.9165), 0°/90°] are described in Fig. 5. It is noticed that the differences in the initial
response evaluated among various models are less. However, with the increase in the response time, the
variation of displacement patterns depends on the type of model employed. It is further inferred that some
reduction in the peak amplitude and shift in the response period are shown from the performance of
different models. It is seen that the response periods predicted by models HSDT9 and HSDT11b are almost
same whereas the models HSDT11la and HSDTI13 yield nearly similar behavior. Although the effect of
thickness stretching mode is to introduce high frequency oscillations in the response, the intensity is very
less compared to those of thermal case. In general, it can be argued while studying the mechanical load case
that the model having zigzag variation in the in-plane displacement (HSDT11a) can approximate to some
extent the complete model (Fig. 6).

The effect of thickness and length ratios on the response of shells with internal pressure is highlighted in
Fig. 7. It is evident from this Figure that, for short shells, the influence of higher-order model rapidly
decreases with the increase in the thickness ratio in comparison with those of thermal case whereas it makes
little difference for the long shell case, even for the thick situation.
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Fig. 6. Transverse and in-plane displacements (w and v) responses of two-layered cross-ply (0°/90°) elliptical cylindrical shells
(a/b=1.25(e=0.6), L/Ry = 0.5, Ry/h = 5) subjected to internal pressure loading.
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5. Conclusions

The effectiveness of the present formulation (HSDT13) is demonstrated considering dynamic analysis of
thick laminated cross-ply elliptical shells subjected to thermal and mechanical loads. Parametric studies are
made to provide some insight into the effects of variations in the degree of non-circularity, length and
thickness ratios on the response characteristics of cylinders. The performance of other possible higher-order
models is also brought out. The inclusion of thickness stretching terms (I') in the transverse displacement
field is essential for the thermal response study compared to the slope discontinuity terms () in the in-plane
displacement functions. For the mechanical loading case, both the i and I' in the displacement fields are to
some extent important in evaluating the response characteristics. It is also revealed that, for short/long
shells under thermal load, the influence of higher-order model is considerable even for fairly thin situation
whereas, for mechanical case, it is important for thick short shells.

Appendix A

The various submatrices involved in Egs. (5b) and (5¢c) are
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O, and O, are null matrices of size 4 x 2 and 4 x 5, respectively.
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